Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing.

نویسندگان

  • Amy D Bradshaw
  • Catalin F Baicu
  • Tyler J Rentz
  • An O Van Laer
  • Janet Boggs
  • John M Lacy
  • Michael R Zile
چکیده

BACKGROUND Chronic pressure overload causes myocardial hypertrophy, increased fibrillar collagen content, and abnormal diastolic function. We hypothesized that one determinant of these pressure overload-induced changes is the extracellular processing of newly synthesized procollagen into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in post-synthetic procollagen processing in normal and pressure-overloaded myocardium. METHODS AND RESULTS To determine whether pressure overload-induced changes in collagen content and diastolic function are affected by the absence of SPARC, age-matched wild-type (WT) and SPARC-null mice underwent either transverse aortic constriction (TAC) for 4 weeks or served as nonoperated controls. Left ventricular (LV) collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 mol/L NaCl extractable) versus insoluble collagen (mature cross-linked collagen), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot. LV, myocardial, and cardiomyocyte structure and function were assessed by echocardiographic, papillary muscle, and isolated cardiomyocyte studies. In WT mice, TAC increased LV mass, SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and soluble and insoluble collagen. In SPARC-null mice, TAC increased LV mass to an extent similar to WT mice. In addition, in SPARC-null mice, TAC increased fibrillar collagen content, albeit significantly less than that seen in WT TAC mice. Furthermore, the proportion of LV collagen that was insoluble was less in the SPARC-null TAC mice (86+/-2%) than in WT TAC mice (99+/-2%, P<0.05), and the proportion of collagen that was soluble was greater in the SPARC-null TAC mice (14+/-2%) than in WT TAC mice (1+/-2%, P<0.05) As a result, myocardial diastolic stiffness was lower in SPARC-null TAC mice (0.075+/-0.005) than in WT TAC mice (0.045+/-0.005, P<0.05). CONCLUSIONS The absence of SPARC reduced pressure overload-induced alterations in extracellular matrix fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post-synthetic procollagen processing and the development of mature cross-linked collagen fibrils in normal and pressure-overloaded myocardium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing.

Advanced age, independent of concurrent cardiovascular disease, can be associated with increased extracellular matrix (ECM) fibrillar collagen content and abnormal diastolic function. However, the mechanisms causing this left ventricular (LV) remodeling remain incompletely defined. We hypothesized that one determinant of age-dependent remodeling is a change in the extent to which newly synthesi...

متن کامل

Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing.

Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dep...

متن کامل

SPARC regulates collagen interaction with cardiac fibroblast cell surfaces.

Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has ...

متن کامل

Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression.

While the term "fibrosis" can be misleading in terms of the complex patterns and processes of myocardial extracellular matrix (ECM) remodeling, fibrillar collagen accumulation is a common consequence of relevant pathophysiological stimuli, such as pressure overload (PO) and myocardial infarction (MI). Fibrillar collagen accumulation in both PO and MI is predicated on a number of diverse cellula...

متن کامل

Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload.

Cardiac interstitial fibrillar collagen accumulation, such as that associated with chronic pressure overload (PO), has been shown to impair left ventricular diastolic function. Therefore, insight into cellular mechanisms that mediate excessive collagen deposition in the myocardium is pivotal to this important area of research. Collagen is secreted as a soluble procollagen molecule with NH(2)- a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 119 2  شماره 

صفحات  -

تاریخ انتشار 2009